MOTOR A REACCIÓN

¿Qué es un motor a reacción?
Un motor a reacción es una máquina que produce un empuje, realizando una serie de transformaciones termodinámicas a un fluído (aire). Para comprender mejor esto, vamos a empezar diciendo las leyes físicas que rigen el funcionamiento de un motor de reacción. Éste se basa en la 2ª y 3ª ley de Newton.

2ª Ley: "El aumento en la cantidad de movimiento es igual al impulso de la fuerza aplicada".
3ª Ley: "A toda acción le corresponde una reacción igual y de sentido contrario"

Al aire hay que aplicarle una serie de transformaciones termodinámicas para conseguir que salga acelerado.


El motor a reacción le aplica al fluido las mismas transformaciones que se desarrollan en un motor de explosión (el de los coches, normal y corriente), esto es: compresión, explosión/expansión.
En el cilindro de un motor de explosión, lo primero entra la mezcla aire combustible. Una vez está en el cilindro, éste sube comprimiendo la mezcla. Cuando el cilindro está arriba, y la mezcla bien comprimida, se enciende la bujía, que hace que la mezcla se queme. Ésta explota, y expande los gases, empujando el cilindro hacia abajo. Después el cilindro sube, con la válvula de escape abierta, sacando los gases. La explosión de la mezcla, al hacer bajar el cilindro, es la que hace que se mueva el cigüeñal, y éste hace que se muevan las ruedas (o hélice, en un avión). Si se representa en un gráfico presión-volumen, las condiciones del fluído describen una línea cerrada, y el área encerrada en la misma es el trabajo que hemos aportado al fluido.
En el reactor ocurre lo mismo: el aire entra por delante, se comprime en el compresor, se quema en la cámara de combustión y se expulsa a través de la tobera. La diferencia es que se expulsa muy rápido, y eso produce el empuje (3ª ley de Newton).

Partes de un motor a reacción
Un reactor clásico, del tipo "turboreactor", consta de las siguientes partes :
  • Compresor: 

El compresor más habitual en estos tiempos es el axial Su función es absorber aire y comprimirlo.
Como véis, está formado por unos discos con álabes que dan vueltas, y otros que están quietos. Los que giran se llaman "ROTOR", y los que están quietos se llaman "ESTÁTOR". Huelga decir que los álabes son aerodinámicos, como los perfiles de las alas. La misión del rotor es aportar una energía cinética al fluído, una velocidad, vaya. Después, ese incremento de energía cinética se convierte en un incremento de presión en el estator, ya que sus álabes forman conductos divergentes (si el aire atraviesa un conducto divergente, su velocidad disminuye y su presión aumenta, y si es convergente, al revés).

  • Cámara de combustión:

Una vez el fluído ha pasado el compresor, su presión es elevada. Ahora es el momento de inyectarle combustible y quemarlo.
Es muy sencillo, el aire llega comprimido, y se divide en dos flujos. El flujo primario se introduce en el "tubo de llama", se inyecta combustible con un vaporizador y a través de una bujía, se inflama la mezcla. La temperatura alcanza 1700-2000ºC. El flujo secundario va entre el tubo de llama y la carcasa (cárter) refrigerando el material del tubo a base de crear una película de aire. Al final de la cámara, el flujo secundario se mezcla con el primario para bajar la temperatura hasta unos 200-500ºC. Si no se hiciese esto, la turbina (que es el elemento que viene después de la cámara de combustión) se fundiría.

  • Turbina:

Una turbina es un elemento rotativo, al que un agente exterior hace girar para producir un trabajo.
Cuando el aire atraviesa la turbina, la mueve como si fuese un molino. Y la turbina está conectada mediante un eje al compresor. También está conectada a un generador eléctrico. Vamos, que la turbina cuando gira, mueve al compresor y además genera electricidad. Es exactamente lo mismo que un generador eólico, o que una central hidroeléctrica. Eso es una turbina.
La turbina, al igual que el compresor, está formada por discos con álabes que giran (Rotor) y otros que están quietos (Estátor). La diferencia con respecto al compresor es que el estátor va antes del rotor, y sirve para exactamente lo contrario que en el compresor: en este estátor se transforma la presión en energía cinética, y el rotor es movido por el aire, desarrollando trabajo.


En torno a 1/3 de la potencia de los gases se usa para mover la turbina y con ella el compresor. Los otros 2/3 son los que se encargan de obtener empuje a la salida.

  • Tobera:

En la tobera los gases se expanden, adquiriendo velocidad. Después, salen a la atmósfera. El empuje es función de la diferencia de velocidades entre la salida y la entrada del motor.

0 comentarios: